Dendrites Enable a Robust Mechanism for Neuronal Stimulus Selectivity

نویسندگان

  • Romain D. Cazé
  • Sarah Jarvis
  • Amanda J. Foust
  • Simon R. Schultz
چکیده

Hearing, vision, touch: underlying all of these senses is stimulus selectivity, a robust information processing operation in which cortical neurons respond more to some stimuli than to others. Previous models assume that these neurons receive the highest weighted input from an ensemble encoding the preferred stimulus, but dendrites enable other possibilities. Nonlinear dendritic processing can produce stimulus selectivity based on the spatial distribution of synapses, even if the total preferred stimulus weight does not exceed that of nonpreferred stimuli. Using a multi-subunit nonlinear model, we demonstrate that stimulus selectivity can arise from the spatial distribution of synapses. We propose this as a general mechanism for information processing by neurons possessing dendritic trees. Moreover, we show that this implementation of stimulus selectivity increases the neuron's robustness to synaptic and dendritic failure. Importantly, our model can maintain stimulus selectivity for a larger range of loss of synapses or dendrites than an equivalent linear model. We then use a layer 2/3 biophysical neuron model to show that our implementation is consistent with two recent experimental observations: (1) one can observe a mixture of selectivities in dendrites that can differ from the somatic selectivity, and (2) hyperpolarization can broaden somatic tuning without affecting dendritic tuning. Our model predicts that an initially nonselective neuron can become selective when depolarized. In addition to motivating new experiments, the model's increased robustness to synapses and dendrites loss provides a starting point for fault-resistant neuromorphic chip development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear dendrites enable robust stimulus selectivity

Hubel and Wiesel discovered that some neurons in the visual cortex (1) respond selectively to elongated visual stimuli of a particular orientation, proposing an elegant feedforward model to account for this selectivity. Since then, there has been much experimental support for this model, however several unexpected results, from in vivo two photon imaging of the dendrites of layer 2/3 pyramidal ...

متن کامل

Influence of a subtype of inhibitory interneuron on stimulus-specific responses in visual cortex.

Inhibition modulates receptive field properties and integrative responses of neurons in cortical circuits. The contribution of specific interneuron classes to cortical circuits and emergent responses is unknown. Here, we examined neuronal responses in primary visual cortex (V1) of adult Dlx1(-/-) mice, which have a selective reduction in cortical dendrite-targeting interneurons (DTIs) that expr...

متن کامل

Direction-Specific Adaptation in Neuronal and Behavioral Responses of an Insect Mechanosensory System.

UNLABELLED Stimulus-specific adaptation (SSA) is considered to be the neural underpinning of habituation to frequent stimuli and novelty detection. However, neither the cellular mechanism underlying SSA nor the link between SSA-like neuronal plasticity and behavioral modulation is well understood. The wind-detection system in crickets is one of the best models for investigating the neural basis...

متن کامل

Learning generalisation and localisation: Competition for stimulus type and receptive field

The evidence from neurophysiological recordings from the primate visual system suggests that sensory patterns are processed using units arranged in a hierarchical multi-layered network. Responses of these units show progressively increasing receptive field size combined with selectivity for increasing stimulus complexity at successively higher levels. It is argued that the rate of the increase ...

متن کامل

Stimulus-dependent recruitment of lateral inhibition underlies retinal direction selectivity

The dendrites of starburst amacrine cells (SACs) in the mammalian retina are preferentially activated by motion in the centrifugal direction, a property that is important for generating direction selectivity in direction selective ganglion cells (DSGCs). A candidate mechanism underlying the centrifugal direction selectivity of SAC dendrites is synaptic inhibition onto SACs. Here we disrupted th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 29 9  شماره 

صفحات  -

تاریخ انتشار 2017